目次

研究発表
否定要因の抑制性を考慮する否定実現方法
片 岡 喜代子 1

空想化構文：統語選択性と文語選択性
小 林 亜希子 12

Affectedness Constraint 再び：中間構文とアスペクトの統語論
松 本 マスミ 23

『燃やしたけれど燃えなかった』構文における「結果」について—アスペクト観点からのアプローチー—
菅 宗 均 34

語形成のモジュール性と意味解釈—「V+そこなう」と「V+落とす」における否定の意味解釈について
由 本 陽 子 45

語彙的複合動詞における前項概念化—「追いかける」「追ってくる」に見られる接辞の条件
池 谷 知 子 56

一般サーエ文とサーエ条件文間の統語的解釈
李 埃 瑞 67

与格主語構文の構築について—「ミドリ」との対称性からの考察
真 野 美 綾 78

「か」の話題設定機能
賀 田 太 一 89

反復性と可能性—現代日本語のスルコトガールー
富 崎 和 人 99

“概念化のID過程モデル”に基づくメンタルスペース現象の定式化
黑 田 航 110

変化文の否定のパラドックスとコピュラ文
酒 井 智 宏 121

Cognitive Time Model～Is Time Dynamic or Static ～
倉 石 智 子 132

The Notion of Telicity and Chinese Verb Compounds
張 祥 桜 143

主語の移動からみた英語結果構文の構築—動態形態論の枠組みから—
玉 井 尚 彦 154

転動詞 v と副詞の意味変容の寄与—日本語の「活動的/生成複合動詞」の考察を通じて
張 超 165

中国語結果構文のイベント構造と形態対応
鈴 木 武 生 176

計量句を伴う形容詞比較語文
伊 藤 さとみ 187

日本語普通名詞と種類名詞の解釈とその統語的解析
毛 利 史 生 196

意外な出来事をあらわすXP+NP連鎖と複名詞の解釈
金 子 真 207

人称と非人称の間—対照型論理的観点から—
小 川 晓 夫 218

語彙文の認知構造
森 草 樹 228

「継続」と認知プロセス
奥 田 雅 信 238

シンポジウム
モダリティと現実性—非現実性
溝 田 治 美 249

言語類型論の観点から見たモダリティ—日韓語―英独語の対照に基づいて— 堀 江 燕、ナイコ・ナロック 260

ワークショップ
文法変化とバリエーション―社会言語学と文法研究の接点を求めて—
決 水 勝 己（代表者）、朝日祥之、高木千恵、阿部芳人 271

借用語音規則—外来語の分析から何がわかるか
塚 薫 晴 夫（代表者）、Karin Doblas、亀利幹維雄、小川智史、福井真佐 275

文法的比較における意味生成をめぐって
龍 城 正 明（代表者）、佐藤勝己、阿部貞、早川光江、藤原靖子 280

統語的観点から見たスコープ解釈の諸問題
上 山 あやみ（代表者）、林下決定、高井健生、川添愛、田中大輝 285

ヒトはどのように言語を理解しているか？：機能的磁気共鳴画像(MRI)を用いた脳科学からのアプローチ
佐々 裕子（代表者）、横山幸、井原健 290

日本語受動文の二つの極
堀 川 智 也（代表者）、森廣司、栗原由加、加賀夏海 291

第 28 回 関西言語学会プログラム（神戸市外国語大学 2003年10月18日・19日）
事務局便り 295

299
A Paradox of the Negation of Change Sentences and Copular Sentences

Tomohiro SAKAI
(COE Postdoctoral Fellow, University of Tokyo)

1. Introduction
The purpose of this paper is to present, within the Mental Space Framework (Fauconnier 1985, 1997), a paradox of the negation of the change predicate naru in Japanese and to show that the copula functions as a negative counterpart of naru despite their syntactic differences.

2. The constructive rule for the change predicate naru
Following Sakai (2004) we assume the constructive rule for the change predicate naru illustrated in (1).

(1) Constructive Rule of the sentence [s1 (NP) [s2P] naru]
 a. M1: ? ¬P2, where M1 is a viewpoint space
 b. M2: P, where M2 is a focus space and M1 < M2
 c. The spaces M1 and M2 are linked by connectors.
The rule (1) assigns the sentences in (2a), (2b) and (2c) the space configurations in (3a), (3b) and (3c) respectively.

(2) a. [s1[s2Daitooryoo ga Bush ni] naru]
 president NOM COP become
 Lit: The president becomes Bush.
 “Bush becomes the president.”
 b. [s1Ken ga [s2PRO1 bengosi ni] naru]
 NOM lawyer COP become
 “Ken becomes a lawyer.”
 c. [s1[s2Otamazyakusi ga kaeru ni] naru]
 tadpole NOM frog COP become
 “A tadpole becomes a frog.”

(3) a. (2a):
 ? M1: ¬[RVC (R) = x],
 where R = president, x = Bush, RVC = role-value connector
 M2: RCV (R) = x’, where C (R) = R’, C (x) = x’ and M1 < M2
 b. (2b):
 ? M1: x = Taro, ¬lawyer (x)
 M2: x’ = Taro, lawyer (x’), where C (x) = x’ and M1 < M2
 c. (2c):
 ? M1: tadpole (x)
M2: frog (x'), where C(x) = x' and M1 < M2

In (3), the interpretations of the sentences rely on the types of Connector C, but this is not of interest here. It suffices to assume that C is an identity connector, giving rise to temporal interpretations. For example, (3c) represents the transformation of a tadpole into a frog.

3. The constructive rule for negation

We follow Sakai (2002) in assuming the constructive rule for negative sentences (4).

(4) The constructive rule for Mn: [φ nai]
Mm: ¬ψ, where Mm is the focus space of φ,
and ψ is the assertion of φ.

Otherwise the configuration is identical to the one constructed by Mn: [φ].

This rule can be justified independently of the change predicate naru. Applied to the sentences in (5a) and (6a), it yields the adequate representations in (5b) and (6b) respectively. Note that the negation operates only on the assertion of the sentence, leaving aside its presupposition marked by "φ" in (5-6).

(5) a. M1: Tama wa siroi neko dewa nai.
 TOP white cat COP NEG
 "Tama is not a white cat."

b. ?M1: x = Tama
 M1: ¬[white (x) ∧ cat (x)]

(6) a. M1: 2000 nen Tama wa nezumi wo toru no wo
 year TOP mouse ACC catch COMP ACC
 yame nakat-ta
 stop NEG-PAS
 "In 2000 Tama did not stop catching mice."

b. ?M1: x = Tama
 ?M1: catch-mice (x)
 M1: in 2000, [[M2]]
 M2: x' = Tama,
 M2: ¬¬catch-mice (x) (= catch-mice (x'))
 where C(x) = x', M1 < M2, M2 < S

It is assumed here that the double negation can be eliminated from the representation. In (6b), the predication ¬¬catch-mice (x') valid in M2 can be simplified as catch-mice (x'). The elimination of double negation in semantic representation as just seen should be clearly distinguished from the elimination of syntactic double negation. Our argument developed below rests on the observation that a double negation which feeds the symbols ¬¬ in a semantic representation cannot always be eliminated while the symbols can be deleted. This mismatch between syntax and semantics will play a crucial role in identifying a special character of the change predicate naru.
4. Negations of change sentences
4.1 Main clause negation and a theorem of the negation of the change predicate

Given the rules in (1) and (4), change sentences with main clause negation are processed as in (7)\(^9\).

\[(7) \quad \text{The processing of } [s_1 (NP) [s_2P] nara-nai] \]
\[\quad ? \ M1 : \neg P \]
\[\quad M2 : \neg P \]
This correctly captures the semantics of (8), for example.

\[(8) \quad a. \quad [s_1[s_2Daitooroyoo ga Bush ni] nara-nai]
\quad \quad \text{president NOM COP become-NEG}
\quad \quad \text{Lit: The president does not become Bush.}
\quad \quad \text{“Bush does not become the president.”}
\quad b. \quad [s_1 Ken, ga [s_2PRO, bengosi ni] nara-nai]
\quad \quad \text{NOM lawyer COP become-NEG}
\quad \quad \text{“Ken does not become a lawyer.”}
\quad c. \quad [s_1[s_2Otamazyakusi ga kaeru ni] nara-nai]
\quad \quad \text{tadpole NOM frog COP become-NEG}
\quad \quad \text{“A tadpole does not become a frog.”}

The processing of (8) is shown in (9).

\[(9) \quad \text{a. (10a):}
\quad \quad ? \ M1 : \neg[RVC (R) = x], \]
\quad \quad \text{where } R = \text{president}, x = \text{Bush}, RVC = \text{role-value connector}
\quad \quad M2 : \neg RCV (R') = x',
\quad \quad \text{where } C (R) = R', C (x) = x' \text{ and } M1 < M2
\quad b. \quad (10b):
\quad \quad ? \ M1 : x = \text{Taro, } \neg \text{lawyer (x)}
\quad \quad M2 : x' = \text{Taro, } \neg \text{lawyer (x'), where } C (x) = x' \text{ and } M1 < M2
\quad c. \quad (10c):
\quad \quad ? \ M1 : \text{tadpole (x)}
\quad \quad M2 : \neg \text{frog (x'), where } C (x) = x' \text{ and } M1 < M2

As one can see, the interaction between (1) and (4) yields the theorem shown in (10).

\[(10) \quad \text{a. In change sentences with main clause affirmation, the predication in M1 and in M2 are different.}
\quad \text{b. In change sentences with main clause negation, the predication in M1 and in M2 are identical.}

4.2 The negation of the sentential complement

When the sentential complement P in (1) is a negative clause Q de-nai as in (11), we have space configurations of type shown in (12).

\[(11) \quad a. \quad [s_1[s_2Daitooroyoo ga Bush de-raku] naru]
\quad \quad \text{president NOM COP-NEG become}
\quad \quad \text{Lit: The president does not become Bush.}
\quad \quad \text{“Bush does not become the president.”}
\quad b. \quad [s_1 Ken, ga [s_2PRO, bengosi ni] de-nai]
\quad \quad \text{NOM lawyer COP-NEG become}
\quad \quad \text{“Ken does not become a lawyer.”}
\quad c. \quad [s_1[s_2Otamazyakusi ga kaeru ni] de-nai]
\quad \quad \text{tadpole NOM frog COP-NEG become}
\quad \quad \text{“A tadpole does not become a frog.”}
Lit: “The president becomes not-Bush”
“Bush gives up his job as president.”

b. [s1 Ken ga [s2 PRO1] bengosi de-naku] naru)
 NOM lawyer COP-NEG become
Lit: Ken becomes not lawyer.
“Ken gives up his job as a lawyer.”

c. [s1[s2 Otamazyakusi ga otamazyakusi de-naku] naru]
 tadpole NOM tadpole COP-NEG become
Lit: A tadpole becomes not-tadpole.
“A tadpole is transformed into a frog.”

(12) The processing of [s1 (NP) [s2 Q de-naku] naru]
? M1 : Q (= ¬¬Q)
M2 : ¬Q

Note that in (12), as in (6b), a double negation is eliminated from the semantic representation.

(13) a. (11a):
? M1 : [RVC (R) = x],
where R = president, x = Bush, RVC = role-value connector
M2 : ¬RVC (R') = x',
 where C (R) = R', C (x) = x' and M1 < M2
b. (11b):
? M1 : x = Taro, lawyer (x)
M2 : x' = Taro, ¬lawyer (x'), where C (x) = x' and M1 < M2
c. (11c):
? M1 : tadpole (x)
M2 : ¬tadpole (x'), where C (x) = x' and M1 < M2

Naturally enough, the configurations in (13) obey the theorem in (10); the predications in M1 and M2 are different in each case.

4.3 Double negation

When both the main clause and the embedded clause are negated in (1), as in (14), we get the configuration of the type shown in (15).

(14) a. [s1[s2 Daitooryoo ga Bush de-naku] nara-nai]
 president NOM COP-NEG become-NEG
Lit: “The president does not become not-Bush”
“Bush is still the president.”

b. [s1 Ken ga [s2 PRO1] bengosi de-naku] nara-nai]
 NOM lawyer COP-NEG become-NEG
Lit: Ken does not become not-lawyer.
“Ken is still a lawyer.”

c. [s1[s2 Otamazyakusi ga otamazyakusi de-naku] nara-nai]
 tadpole NOM tadpole COP-NEG become-NEG
Lit: A tadpole does not become not-tadpole.
“The tadpole is still a tadpole.”

(15) The processing of \([s_1 (NP) [s_2 Q \text{ de-naku}] \text{nara-nai}]\)
 ? M1 : Q (= \(\neg\neg Q\))
 M2 : Q (= \(\neg\neg Q\))

(16) a. (14a):
 ? M1 : [RVC \(R = x\)],
 where \(R = \text{president}, x = \text{Bush}\), RVC = role-value connector
 M2 : RCV (R') = x',
 where C (R) = R', C (x) = x' and M1 < M2

b. (14b):
 ? M1 : x = Taro, lawyer (x)
 M2 : x' = Taro, lawyer (x'), where C (x) = x' and M1 < M2

c. (14c):
 ? M1 : tadpole (x)
 M2 : tadpole (x'), where C (x) = x' and M1 < M2

It is clear that these configurations also obey the theorem in (10). Since the main clause is affirmative in (14), the predications in M1 and M2 are identical in (16).

4.4 A paradox of the elimination of double negation

In this section we present a paradox concerning the elimination of syntactic double negation in sentences containing the predicate \(\text{naru}\).

To begin with, it is necessary to note that the constructive rule (4) generally allows for eliminations of syntactic double negation, provided eliminations of double negation in semantic representations (= for any space Mn and any proposition \(\gamma\), Mn : \(\neg\neg \gamma \Leftrightarrow \text{Mn} : \gamma\) are licensed. If sentence Mn : “Q” has Mn : \(\zeta\) as presupposition and Mn : \(\xi\) as assertion, the rule in (4) assigns sentence Mn : “Q-nai” the same semantic representation as the one assigned to Mn : “Q”, namely the representation (17).

(17) ? Mn : \(\zeta\)
 Mn : \(\xi\)

We do not give the proof here; we simply show an example. The rule in (4) says essentially that the negation affects only the assertion of the sentence while leaving the presupposition unchanged, an assumption generally accepted in the literature. Consider the negation of sentence (5), repeated here as (18).

(18) a. M1: Tama wa siroi neko dewa nai.
 \hspace{1cm} TOP white cat COP NEG
 “Tama is not a white cat.”

b. ? M1 : x = Tama
 M1 : \(\neg\text{[white (x) \land cat (x)]}\)

According to (4), negating sentence (18a) leads to adding a symbol \(\neg\) to the formula \(\neg\text{[white (x) \land cat (x)]}\) which represents the assertion of the sentence. Thus, sentence (19a), negation of (18a), is associated with the representation in (19b), which is equivalent with (19c) due to the elimination of double negation in
semantic representations assumed to be valid here.

(19) a. M1: Tama wa siroi neko de nai koto wa nai.
 TOP white cat COP NEG fact TOP NEG
 “It is not the case that Tama is not a white cat.”

b. M1: x = Tama
 M1: \neg [\text{white}(x) \land \text{cat}(x)]

c. M1: x = Tama
 M1: [\text{white}(x) \land \text{cat}(x)]

(19c) is exactly the same as the representation that the affirmative counterpart of (18a) illustrated in (20) would be associated with.

(20) M1: Tama wa siroi neko da.
 TOP white cat COP
 “Tama is a white cat.”

(19a) and (20) are thus equivalent, given the rule in (4). This amounts to saying that (4) allows for eliminations of syntactic double negation.

Now, compare (11-12) and (14-15). One could see that the negation in the sentential complement of naru contributes a symbol \(\neg \) to the formula valid in M2 and that the negation in the main clause contributes another to it. When the complement is negative as in (11) and (14), the proposition valid in M1 contains a symbol \(\neg \), so that it is represented as \(\neg Q \). The main clause negation as illustrated in (14) adds another symbol \(\neg \) to the formula, giving rise to a proposition represented as \(\neg \neg Q \). This shows that the negation in the complement and that in the main clause constitute a syntactic double negation, despite the fact that the two constituents are syntactically dissociated.

As mentioned above, it is assumed in this work that the double negation in semantic representations can be eliminated. The elimination of the double negation in \(\neg \neg Q \) in (15) gives rise to the proposition \(Q \). The semantic representation in (15) now does not contain any negation. The question which arises here is whether the syntactic double negation in (14) can be eliminated accordingly. The answer is no. Sentences (21), obtained by eliminating the double negations in (14), are by no means synonyms of (14), if not unacceptable.

(21) a. \#s_1[s_2Daitooryoo ga Bush ni] naru
 president NOM COP become
 Lit: The president becomes Bush.
 “Bush becomes the president.”
 Intended: Bush is still the president.

b. \#s_1[Ken; ga [s_2PRO; bengosi ni] naru]
 NOM lawyer COP become
 “Ken becomes a lawyer.”
 Intended: Ken is still a lawyer.

c. \#s_1[s_2Otamazyakusi ga otamazyakusi ni] naru
 tadpole NOM tadpole COP become
 “A tadpole becomes a tadpole.”
Intended: The tadpole is still a tadpole.
Why is the elimination of syntactic double negation impossible in (14)? Put differently, why is it impossible to associate the sentences in (21) with the representations in (16)? The reason lies in the theorem stated in (10) above. The main clauses of (21) are affirmative and the predicators in M1 and M2 are different in (16). Then the theorem (10) forbids linking them.

Note that the fact that the two negations are syntactically dissociated in the sentences in (21) does not suffice to rule out the elimination of the syntactic double negations in them. This is confirmed by the possibility for the syntactic double negation to be eliminated in (22a) as in (22b). (22b) would be interpreted in the same way as (22a) is.

(22) a. Watashi wa Ken ga tensai de-nai to wa omowa-nai.
 I TOP NOM genius COP-NEG COMP TOP think-NEG
 "I do not think that Ken is not a genius."

 b. Watashi wa Ken ga tensai da to omou.
 I TOP NOM genius COP COMP think
 "I think that Ken is a genius."

The impossibility of (21) is a real paradox. The theorem (10), which bans the elimination of syntactic double negation in the sentences in (14), derives from the rules in (1) and (4). But, as discussed above, (4) itself generally allows for the elimination of syntactic double negation. Thus, the meaning potential of the change predicate *naru* stated in (1) contains something that gives rise to the contradiction observed between (4) and (21).

5. The copula as a negation of the change predicate *naru*

 As argued in the previous section, the lexical semantics of *naru* rules out the affirmative sentences in (21) although they contain no negation in their semantic representations shown in (16). Is there any way to avoid the mismatch between syntax and semantics? To express the state of affairs represented by (16) with affirmative sentences, one can use copular sentences as in (23).

(23) a. Daitooryoo wa Bush (no mama) da.
 president TOP stay COP
 "The president is (still) Bush."

 b. Ken wa bengosi (no mama) da.
 TOP lawyer stay COP
 "Ken is (still) a lawyer."

 c. Otamazayakusi wa otamazayakusi (no mama) da.
 tadpole TOP tadpole stay COP
 "The tadpole is (still) a tadpole."

The sentences in (23) serve as negative counterparts of the change sentences in (11), despite their syntactic difference. This can be accounted for by the fact that the copula is a trans-spatial operator (Fauconnier 1985) just as the change predicate *naru*, and that it is nothing to do with such a theorem as (10). In short,
the copula functions in just the same way as the change predicate except that it escapes from the effect of (10).

The correspondence between the copula and the change predicate can be independently justified by the following facts. First, (24a) and (24b) always contradict each other and cannot be asserted at the same time.

(24) a. X becomes not-Y at time T.
 b. X is (still) a T at time T.

Second, the diversity of the spaces $M1$ and $M2$ coincides in (11) and (23).

(25) a. Naomi no {sinnen / e / eiga} de wa {(11a) / (11b) / (11c)}.
 GEN belief picture movie in TOP
 “In Naomi’s {belief / picture / movie}, {(11a) / (11b) / (11c)).”
 b. Naomi no {sinnen / e / eiga} de mo {(23a) / (23b) / (23c)}.
 GEN belief picture movie in also
 “In Naomi’s {belief / picture / movie}, {(23a) / (23b) / (23c)).”

Third, in order negate (26a), it is often more natural to use sentences of type (26c) than to use (26b).

(26) a. Mikka go mo X wa Y da.
 3-days in also TOP COP
 “In three days, X will still be Y.”
 b. Mikka go ni wa X ga Y de-nai.
 3-days in at TOP NOM COP-NEG
 “In three days, X will not be Y”
 c. Mikka go ni wa X ga Y de-naku natte iru.
 3-days in at TOP NOM COP-NEG become PER
 “In three days, X will not have become not-Y.”

Fourth, although the possibility of (27a) depends on the expectation of (27b), negation of (27a) (cf. Michaelis 1996), the possibility of (28a) does not rest on the expectation of (28b), which can never be true, but on that of (28c).

(27) a. Ken wa mada ikite iru.
 TOP still alive PROG
 “Ken is still alive.”
 b. Ken wa ikite i-nai.
 TOP alive PROG-NEG
 “Ken is not alive.”

(28) a. X wa mada X da.
 TOP still COP
 “X is still X.”
 b. X wa X de-nai.
 TOP COP-NEG
 “X is not X.”
 c. X ga X de-naku natte iru.
 NOM COP-NEG become PER
 “X has become not-X.”
This suggests that the negation of (27a) is not (27b) but rather (27c).

6. Conclusion

The negation of affirmative change sentences such as (11) is expressed by negative change sentences with a double negation such as (14). But the theorem in (10), derived from the lexical semantics of the predicate naru, does not allow for the elimination of the double negation. In this situation, copular sentences such as (23) are resorted to as negative counterparts of (11).

Although we do not enter into the details here, the argument developed in this work provides a basis for giving a systematic account of Sakahara’s (1992, 2002) suggestion that the tautology “X is X” is a double negation of “it is not the case that X is not X”, expressed as an affirmative sentence. We leave the discussion to future research.

Abbreviations

ACC: accusative
COMP: complementizer
COP: copula
GEN: genitive
NEG: negation
NOM: nominative
PAS: past
PER: perfective
PROG: progressive
TOP: topic

Notes

1 “P” represents the embedded clause.
3 In general “Mn < Mm” means that the space Mn precedes the space Mm temporarily.
4 Applying (1) to (2c) first produces (i).
(i) ? M1 : tadpole (x), ¬frog (x)
 M2 : tadpole (x'), frog (x')

But space M2 is not coherent given the relation (ii), which holds in normal situations. By a default strategy, the subject description tadpole (x') is deleted from M2 as in (iii).
(ii) ∀x[frog (x) → ¬tadpole (x)]
(iii) ? M1 : tadpole (x), ¬frog (x)
 M2 : frog (x')
(iv) ∀x[tadpole (x) → ¬frog (x)]
(v) ? M1 : tadpole (x)
 M2 : frog (x')

Furthermore, the equivalence between (ii) and (iv) allows us to delete the redundant

---129---
predication \(\neg \theta \sigma \) from M1, as in (v) \((= (3c) \) in the text).

5 For other interpretations, see Sakai (2004).

6 The particle \(wa \) is assumed to represent an existential presupposition.

7 \(S \) : speech time

8 The two types of eliminations of double negation can roughly be formulated as follows:

(i) Elimination of double negation in semantic representations:
For any space Mn and any proposition \(\gamma \), Mn : \(\neg \neg \gamma \Leftrightarrow \) Mn : \(\gamma \)

(ii) Elimination of syntactic double negation:
For any proposition P, [[P-nai]-nai] \(\Leftrightarrow P \)

9 Correspondences between (4) and (1):
(i) \(Mn = M1 \)
(ii) \(Mm = M2 \)
(iii) \(\phi = [s1 \ (NP) \ [s2P] \ naru] \)
(iv) \(\Psi = P \)

10 It is not claimed here that (22a) and (22b) are completely equivalent. They are interpreted
differently at the pragmatic level of course, due to a Gricean principle. The fact that the
speaker uses a less concise expression such as (22b) leads to a conversational implicature that
there is some reason he cannot use (22a).

References

Sakahara, Shigeru. (2002): “Tootolozi to kategorika no dainamizumu (Tautologies and Dynamism of categorizations)”, Ôhori Toshio (ed.): 105-134.
変化文の否定のパラドックスとコピュラ文

酒井 智宏

(東京大学 COE 特任研究員)

この論文では、メンタル・スペース理論 (Fauconnier 1985, 1997) の枠組みで、変化
述語「なる」の否定のパラドックスを提示し、コピュラ文がある種の変化文の否定を補
完していることを示す。

まず、変化文の構築規則を次のように定める。

(1) 変化文[s1 (NP) [s2 P] なる]のスペース構築規則 (P は補文)
 a. M1 : ? → P ただし、M1 は視点
 (?は Dinsmore 1991 のいう前提条件を表す)。
 b. M2 : P ただし、M2 は焦点で、
 かつ M1 < M2 (= M1 は M2 に先行する)
 c. M1 と M2 は接続体で結合される。

次に、否定の構築規則を次のように定める。

(2) Mn : {φ ない}のスペース構築規則

 Mn : → φ、ただし Mn は φ の焦点スペースであり、
 φ は φ の断定を表す。

 その他に関しては、Mn : {φ}の処理と同様。

この規則は変化文とは独立に正当化できる。

規則(1)と(2)から、次の定理が導出される。

(3) a. 主文肯定の変化文では、M1 と M2 の断定は異なる。
 b. 主文否定の変化文では、M1 と M2 の断定は同一である。

(4) のように主文否定(4)の補文が否定文「Q でない」であるときは、得られるスペ
 ベス構成(の一部)は(5)のようになる。

(4) [オタマジャクシがオタマジャクシでなく]ならない。

(5) [s1 (NP) [s2 Q でなく]ならない]の処理

 ? M1 : Q (= → → Q)
 M2 : Q (= → → Q)

一般に否定の構築規則(2)は意味表示上の二重否定除去に伴う続語上の二重否定除去を認可するが、(2)と(1)から導かれる(3)により変化文(4)では続語上の二重否定除去が不可能になるというパラドックスが観察される。

(6) *[オタマジャクシがオタマジャクシになる。]の意味で)

変化述語はその語彙的性質により(4)を(9)に簡略化することができないが、経済の
策として、「X が X でなくならない」の二重否定除去版としてコピュラ文「X は X(のま
ま)だ」が使われる。これはコピュラがスペース間操作子であり、かつ(3)の定理と無縁
であることから帰結されるが、独立の証拠によっても裏付けることができる。

以上の議論は、トートロジーが肯定文の形で表現された二重否定であるとする坂原
(1992, 2002)の論文に理論的裏付けを与えるための出発点となる。